Relativity 3D Printed Rocket Used New NASA Alloy

In March, the Relativity Space Terran 1 rocket lit up the night sky as it launched from Cape Canaveral Space Force Station in Florida. This was the first launch of a test rocket made entirely from 3D-printed parts, measuring 100 feet tall and 7.5 feet wide. A form of additive manufacturing, 3D printing is a…
Relativity 3D Printed Rocket Used New NASA Alloy


In March, the Relativity Space Terran 1 rocket lit up the night sky as it launched from Cape Canaveral Space Force Station in Florida. This was the first launch of a test rocket made entirely from 3D-printed parts, measuring 100 feet tall and 7.5 feet wide. A form of additive manufacturing, 3D printing is a key technology for enhancing capabilities and reducing cost. Terran 1 included nine additively manufactured engines made of an innovative copper alloy, which experienced temperatures approaching 6,000 degrees Fahrenheit.

Created at NASA’s Glenn Research Center in Cleveland under the agency’s Game Changing Development program, this family of copper-based alloys known as Glenn Research Copper, or GRCop, are designed for use in combustion chambers of high performance rocket engines. A combination of copper, chromium, and niobium, GRCop is optimized for high strength, high thermal conductivity, high creep resistance – which allows more stress and strain in high temperature applications – and good low cycle fatigue ­– which prevents material failures –above 900 degrees Farenheit. They tolerate temperatures up to 40% higher than traditional copper alloys, which leads to higher performance components and reusability.

Dr. David Ellis developed the GRCop family of alloys as a NASA-supported graduate student during the space shuttle era. He continued to mature the alloys and their applications throughout his career.

The most recent iteration, named GRCop-42, uses a variety of additive manufacturing methods to create single-piece and multi-material combustion chambers and thrust chamber assemblies for rocket engines. These processes improved the performance, while significantly reducing weight and costs of thrust chamber components.

NASA found that the GRCop alloys pair very well with the latest additive manufacturing methods. Modern manufacturing methods such as laser powder bed fusion and directed energy deposition are two approaches that can be used to build GRCop parts for many aerospace applications, such as the Terran 1 rocket engines.

In laser powder bed fusion, a 3D computer model is sliced into thin layers digitally. Then, a powder bed machine, which acts like a printer, begins a process of spreading and fusing thin layers of powder atop one another, thousands of times over to form a complete part. This process of bonding layers together results in materials strength that is comparable to forged metal. The advantage of this method is that finely detailed parts can be created, such as nozzles and cooling channels used for combustion chambers and nozzles.

The directed energy deposition (DED) process uses a laser to create a melt pool. Powder is then blown into the melt pool and cools creating solid material. The 3D motion of a robot directs the building process to create the entire part with the laser and blown powder. The DED process produces larger shapes and components compared to laser powder bed fusion, but with fewer fine details

Read More

Total
0
Shares
Leave a Reply

Your email address will not be published.

Related Posts
Tracking China’s EV Battery Tsunami
Read More

Tracking China’s EV Battery Tsunami

China is tracking to more than double its EV battery installations in 2022. China installed 160 GWh of batteries in 2021 and should install 400 GWh of EV batteries in 2022. 63% of the China EV batteries are iron LFP batteries and this could increase to 70-80% for 2022. China could have enough batteries for…
United Visual Artists at Printworks London
Read More

United Visual Artists at Printworks London

Matt Clark takes us inside the collective’s new installation, commissioned to mark the reopening of the iconic London venue. Since United Visual Artists was founded in 2003 by British artist Matt Clark, the London-based collective has created large-scale, site-specific installations for institutions such as the Barbican, Manchester International Festival and 180 The Strand. UVA’s methodology,…
Integrating Quantum Dot Instruments on Solar Sails For Breakthrough Distant Exploration
Read More

Integrating Quantum Dot Instruments on Solar Sails For Breakthrough Distant Exploration

Missions to the outer planets are an important and exciting part of NASA’s goals because these scarcely visited worlds, particularly the ice giants Neptune and Uranus, undoubtedly hold secrets about our solar system. Unlocking these discoveries will enable us to better understand Earth and the formation and evolution of our solar system and countless others.…
Fact Mix 848: Bored Lord
Read More

Fact Mix 848: Bored Lord

Bored Lord drops us right in the middle of the party we all desperately want to be at in this week’s Fact mix. Over the years Daria Lourd’s singular approach to dance music has remained consistently exploratory, irresistible and heart-wrenching. Cutting her teeth within the fiercely creative Oakland DIY scene while making art and music…